OK, I saw this a couple days ago but didn't have time to read it until now, but this seems like research that the science nerds really need to keep an eye on, because this study points to concrete ways to test the hypothesis.
“Cosmological Coupling” – New Evidence Points to Black Holes as Source of Dark Energy
quote:
Searching through existing data spanning 9 billion years, a team of researchers led by scientists at the University of Hawaiʻi at Manoa has uncovered the first evidence of “cosmological coupling” – a newly predicted phenomenon in Einstein’s theory of gravity, possible only when black holes are placed inside an evolving universe.
Astrophysicists Duncan Farrah and Kevin Croker led this ambitious study, combining Hawaiʻi’s expertise in galaxy evolution and gravity theory with the observation and analysis experience of researchers across nine countries to provide the first insight into what might exist inside real black holes.
“When LIGO heard the first pair of black holes merge in late 2015, everything changed,” said Croker. “The signal was in excellent agreement with predictions on paper, but extending those predictions to millions, or billions of years? Matching that model of black holes to our expanding universe? It wasn’t at all clear how to do that.”
The team has recently published two papers, one in The Astrophysical Journal and the other in The Astrophysical Journal Letters, that studied supermassive black holes at the hearts of ancient and dormant galaxies.
The first paper found that these black holes gain mass over billions of years in a way that can’t easily be explained by standard galaxy and black hole processes, such as mergers or accretion of gas.
The second paper finds that the growth in mass of these black holes matches predictions for black holes that not only cosmologically couple, but also enclose vacuum energy—material that results from squeezing matter as much as possible without breaking Einstein’s equations, thus avoiding a singularity.
With singularities absent, the paper then shows that the combined vacuum energy of black holes produced in the deaths of the universe’s first stars agrees with the measured quantity of dark energy in our universe.
“We’re really saying two things at once: that there’s evidence the typical black hole solutions don’t work for you on a long, long timescale, and we have the first proposed astrophysical source for dark energy,” said Farrah, lead author of both papers.
So, if these observations are confirmed this could fundamentally change how astrophysics describes black holes and may also explain how supermassive blackholes got their super size in only 12.7 billion years.
quote:
Black holes come from dead large stars, so if you know how many large stars you are making, you can estimate how many black holes you are making and how much they grow as a result of cosmological coupling. The team used the very latest measurements of the rate of earliest star formation provided by the James Webb Space Telescope and found that the numbers line up.
According to the researchers, their studies provide a framework for theoretical physicists and astronomers to further test—and for the current generation of dark energy experiments such as the Dark Energy Spectroscopic Instrument and the Dark Energy Survey—to shed light on the idea.
“If confirmed this would be a remarkable result, pointing the way towards the next generation of black hole solutions,” said Farrah.
Croker added, “This measurement, explaining why the universe is accelerating now, gives a beautiful glimpse into the real strength of Einstein’s gravity. A chorus of tiny voices spread throughout the universe can work together to steer the entire cosmos. How cool is that?”
Boy, if this data holds up to scrutiny there could be multiple Nobel Prizes.
References:
“A Preferential Growth Channel for Supermassive Black Holes in Elliptical Galaxies at z ≲ 2” by Duncan Farrah, Sara Petty, Kevin S. Croker, Gregory Tarlé, Michael Zevin, Evanthia Hatziminaoglou, Francesco Shankar, Lingyu Wang, David L Clements, Andreas Efstathiou, Mark Lacy, Kurtis A. Nishimura, Jose Afonso, Chris Pearson and Lura K Pitchford, 15 February 2023, The Astrophysical Journal.
DOI: 10.3847/1538-4357/acac2e
“Observational Evidence for Cosmological Coupling of Black Holes and its Implications for an Astrophysical Source of Dark Energy” by Duncan Farrah, Kevin S. Croker, Michael Zevin, Gregory Tarlé, Valerio Faraoni, Sara Petty, Jose Afonso, Nicolas Fernandez, Kurtis A. Nishimura, Chris Pearson, Lingyu Wang, David L Clements, Andreas Efstathiou, Evanthia Hatziminaoglou, Mark Lacy, Conor McPartland, Lura K Pitchford, Nobuyuki Sakai and Joel Weiner, 15 February 2023, The Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/acb704
Stop Tzar Vladimir the Condemned!What if Eleanor Roosevelt had wings? -- Monty PythonOne important characteristic of a theory is that is has survived repeated attempts to falsify it. Contrary to your understanding, all available evidence confirms it. --Subbie
If evolution is shown to be false, it will be at the hands of things that are true, not made up. --percy
The reason that we have the scientific method is because common sense isn't reliable. -- Taq