Register | Sign In

Understanding through Discussion

EvC Forum active members: 46 (9144 total)
4 online now:
Newest Member: vansdad
Post Volume: Total: 912,457 Year: 9,338/14,231 Month: 176/268 Week: 26/114 Day: 12/14 Hour: 2/1

Thread  Details

Email This Thread
Newer Topic | Older Topic
Author Topic:   Fossil Bird Lungs?
Member (Idle past 1297 days)
Posts: 20714
From: the other end of the sidewalk
Joined: 03-14-2004

Message 1 of 2 (842298)
10-29-2018 9:13 AM

Another for Links and Information
This Fossil Is Probably the First to Preserve Ancient Bird Lungs
Fossils, in the popular imagination, preserve hard matter: bones, trackways in the rock, or perhaps even the occasional impressions of feathers in an exceptional skeleton. But when the remnants of soft tissues can be detected, they can unlock a realm of information missing if you only have a skeleton.
Take the late Cretaceous bird Archaeorhynchus spathula, previously known from four specimens with well-preserved bones: useful, but not about to set the world on fire. According to a paper newly published in PNAS, though, the fifth one is the kicker: Not only does it preserve extensive plumage, it appears to show a set of preserved lungs. If confirmed, they would be the first such set from a fossil archosaurthe family that includes crocodiles, dinosaurs, and birdsand suggest that the modern style of bird respiration evolved much earlier than suspected.
Birds have the most complex (and most efficient) respiratory system of any living vertebrate, which they need in order to handle the incredibly difficult task of flying. While mammal lungs pump oxygen in and carbon dioxide out, birds developed a different system. Their lungs don’t expand and contract: Instead, they use a network of air sacs that act like bellows, pulling oxygen through the lungs in such a way that they’re able to make use of it on both inhalation and exhalation.
If these are indeed lungs, however, their presence suggests that the pulmonary specializations that help birds take in oxygen were present as early as 128 million years ago, when the skeletal traces of respiration looked primitive. Since paleontologists usually only have skeletons to work off of, O’Connor says, it’s easy to assume that the soft tissue goes in step with the skeleton. But the lungs add to the growing evidence that skeletal adaptations actually lag behind soft tissue ones, and that the traits key to modern birds' success (digestion and breathing, for example) might have appeared quite a bit earlier than previously suspected.
Time will tel.

we are limited in our ability to understand
by our ability to understand
... to learn ... to think ... to live ... to laugh ...
to share.

Join the effort to solve medical problems, AIDS/HIV, Cancer and more with Team EvC! (click)

Posts: 12971
From: EvC Forum
Joined: 06-14-2002
Member Rating: 1.9

Message 2 of 2 (842360)
10-30-2018 11:02 AM

Thread Moved from Proposed New Topics Forum
Thread moved here from the Proposed New Topics forum.

Newer Topic | Older Topic
Jump to:

Copyright 2001-2023 by EvC Forum, All Rights Reserved

™ Version 4.2
Innovative software from Qwixotic © 2023